

Humic acids in the WIPP

Nathalie A. Wall and Sara A. Mathews Sandia National Laboratories - Carlsbad Programs Group

2003 Radiochemistry Conference Carlsbad, NM July 14-16, 2003

This research is funded by WIPP programs administrated by the Department of Energy. Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE-AC04-94AL85000.

•Important radioelements for the WIPP: Pu, Am > U, Th >> Np

•Predicted actinide oxidation states: Pu(III), Pu(IV), Am(III) U(IV), U(VI), Th(IV), Np(IV), Np(V)

•Metal complexing Ligands present in wastes: Acetic acid: CH₃-CO₂H Citric acid:HO₂CCH₂C(CO₂H)(OH)CH₂CO₂H Oxalic acid: HO₂C-CO₂H EDTA: (CH₂CO₂H)₂N-CH₂CH₂-N(CH₂CO₂H)₂ Lactic acid: CH₃C(OH)HCO₂H HA

HA Generalities (cont.)

Sizes

FA: 5 Å (≈150 MW) to 12 Å (≈3,500 MW) HA: 10 Å (≈3,000 MW) to 300 Å (≈300,000 MW)

Concentrations reported

soil: 0 - 10 % of HS fresh water: 0.1-50 ppm DOC ocean water (surface): 0.5-1.2 ppm DOC groundwater: 0.1-10 ppm DOC

Metal – Ligand complexation:

 $M^{n+} + mL^{p-}$? ML_m^{n-mp}

Equilibrium constant = Stability constant:

$$\beta_{m} = \frac{\left[ML_{m}^{n-mp}\right]}{\left[M^{n+1}\right]\left[L^{p-1}\right]^{m}}$$

HA complexes stability constants

Experimental work performed at FSU, supported at Sandia National Laboratories by US DOE, and at FSU under a Sandia-approved quality assurance program.

- Nash and Choppin. J. Inorg Nucl. Chem, 42, 1045-1050 (1980).
- Choppin and Labonne-Wall. Journal of Radioanalytical and Nuclear Chemistry, 221 (1-2), 67-71 (1997).
- Labonne-Wall et *al.* Actinides speciation in high ionic strength media, Ed. Reed et al., 199-211 (1999).
- Wall et al. Radiochimica Acta, 90, 563-568 (2001).

Stability constants of organic complexes determined for WIPP

Effect of HS on metals concentration:

Solubility of Nd, Th, and U

Medium = ERDA-6

	[HA] = 0 ppm	[HA] = 8 ppm
[Nd] (M)	$3.88 10^{-8}$	$7.44 10^{-8}$
[Th] (M)	$3.83 10^{-8}$	8.29 10^{-5}
[U] (M)	$1.11 10^{-6}$	$9.11 10^{-5}$

Experimental work performed at FSU, supported at Sandia National Laboratories by US DOE, and at FSU under a Sandia-approved quality assurance program.

Experimental work performed at FSU, supported at Sandia National Laboratories by US DOE, and at FSU under a Sandia-approved quality assurance program.

Wall and Choppin. Appl. Geochem. (2003).

HA solubility - DLVO Theory

 V_{T}

 $V_T \propto 1/(z \cdot e^z) \times 1/(\kappa \times e^\kappa)$ $\kappa \propto \sqrt{I}$ and $1/\kappa = DL$ thickness

d

coagulation 7 if:

- ✓ Z 7
- ✓ [7
- ✓ cation radius ⊻
- ✓ [HA] 7
- ✓ pcH ע

Depth (m)

Depth (m)

-200

400

-600

800

1000

-1200

-1400

HA coagulation in absence of MgO

HA coagulation in presence of Fisher MgO

Sandia National Laboratories

g:g = g liquid:g solid

HA coagulation in presence of Premier MgO

g:g = g liquid:g solid

HA coagulation in presence of Ca, Mg

DI water, t: 1d, 7d

	Example o	of Ca and M	g concentration	from MgO	dissolution:
--	-----------	-------------	-----------------	----------	--------------

		g:g	t	[Mg] (M)	[Ca] (M)
DI water	F MgO	10.0	60 d	0	0
DI water	P MgO	10.0	9 d	5 10-4	0.021
DI water	P MgO	2.0	9 d	2 10-4	0.024
ERDA6	P MgO	10.0	60 d	0	0.013
ERDA6	P MgO	2.0	60 d	0	0.013

Acknowledgement

DOE/Carlsbad Field Office

This research is funded by WIPP programs administrated by the Department of Energy.

Sandia National Laboratories

Dr. Frank D. Hansen Dr. Laurence H. Brush Randy A. Buhalts Veronica Gonzalez

